Helical morphologies are widely observed in nature, however, it is very challenging to prepare artificial helical polymers. Especially, precisely understanding the structure information of artificial metal-free helical covalent inorganic polymers via single-crystal X-ray diffraction (SCXRD) analysis is rarely explored. Here, we successfully prepare a novel metal-free helical covalent inorganic polymer ({[Te(C6 H5 )2 ] [PO3 (OH)]}n , named CityU-10) by introducing angular anions (HOPO3 2- ) into traditional tellurium-oxygen chains. The dynamic reversibility of the reaction is realized through the introduction of organic tellurium precursor and the slow hydrolysis of polyphosphoric acid. High-quality and large-size single crystals of CityU-10 have been successfully characterized via SCXRD, where the same-handed helical inorganic polymer chains form a pseudo-two-dimensional layer via multiple hydrogen-bonding interactions. The left-handed layers and right-handed layers alternatively stack together through weak hydrogen bonds to form a three-dimensional supramolecular structure. The single crystals of CityU-10 are found to display promising optical properties with a large birefringence. Our results would offer new guidelines for designing and preparing new crystalline covalent polymers through tellurium-based chemistry.
Read full abstract