The infarcted heart is energetically compromised exhibiting a deficient production of adenosine triphosphate (ATP) and the ensuing impaired contractile function. Short-term blockade of the protein S100A9 improves cardiac performance in mice after myocardial infarction (MI). The implications upon ATP production during this process are not known. This study evaluates whether S100A9 blockade effects ATP synthesis and cardiac contractility in C57BL/6 mice at seven days post-MI. Three experimental groups were used: (i) mice with MI, induced by permanent left coronary ligation, (ii) mice with MI, short-term treated with the S100A9 blocker ABR-238901, and (iii) sham (control) mice. After removing the left ventricle, mass spectrometry, pathway enrichment analysis, Western blot, RT-PCR and pharmacological network analysis were performed. A number of 600 differential abundance proteins (DAPs) was significantly altered by the S100A9 blocker in MI-treated mice compared with MI mice. Some of these proteins were associated with oxidative phosphorylation, citrate cycle (TCA), mitochondrial fatty acid beta-oxidation, glycolysis and cardiac muscle contraction pathways. In the ischemic ventricle, ABR-238901 treatment increased (1.8- to 38-fold) the abundance of proteins NDUFAB1, UQCRC1, HADHA, ACAA2, ALDOA, PKM1, DLD, DLAT, PDHX, ACO2, IDH3A, FH1, CKM, CKMT2, TNNC1, crucial for early cellular metabolic changes, ATP distribution and contractility. The cardiac level of ATP increased (1.8-fold, p < 0.05) in MI mice treated with ABR-238901 compared to MI mice. The network pharmacology analysis uncovered potential pharmacologic targets of ABR-238901 that may interact with DAPs related to ATP production and contractility. Short-term S100A9 blockade effectively regulates the proteins implicated in ATP production and cardiac contractility post-MI, providing a framework for future cardiac energy metabolism studies.
Read full abstract