The flow field of a bluff body, a circular disk, that moves horizontally in a stratified environment is studied using large-eddy simulations. Five levels of stratification (body Froude numbers of ${{Fr}} = 0.5, 1, 1.5, 2$ and $5$ ) are simulated at Reynolds number of ${{Re}} = 5000$ and Prandtl number of $Pr =1$ . A higher ${{Re}} = 50\,000$ database at ${{Fr}} = 2, 10$ and $Pr =1$ is also examined for comparison. The wavelengths and amplitudes of steady lee waves are compared with a linear-theory analysis. Excellent agreement is found over the entire range of ${{Fr}}$ if an ‘equivalent body’ that includes the separation region is employed for the linear theory. For asymptotically large distances, the velocity amplitude varies theoretically as ${{Fr}}^{-1}$ but a correction owing to the dependence of the separation zone on ${{Fr}}$ is needed. The wake waves propagate in a narrow band of angles with the vertical, and have a wavelength that increases with increasing ${{Fr}}$ . The envelope of wake waves, demarcated using buoyancy variance, exhibits self-similar behaviour. The higher ${{Re}}$ results are consistent with the buoyancy effects exhibited at the lower ${{Re}}$ . The wake wave energy is larger at ${{Re}} = 50\,000$ . Nevertheless, independent of ${{Fr}}$ and ${{Re}}$ , the ratio of the wake wave potential energy to the wake turbulent energy increases to approximately 0.6–0.7 in the non-equilibrium stage showing their energetic importance besides suggesting universality in this statistic. There is a crossover of energetic dominance of lee waves at ${{Fr}} <2$ to wake-wave dominance at ${{Fr}} \approx 5$ .
Read full abstract