Abstract
Abstract On 8 August 2023, a wind-driven wildfire pushed across the city of Lahaina, located in West Maui, Hawaii, resulting in at least 100 deaths and an estimated economic loss of 4–6 billion dollars. The Lahaina wildfire was associated with strong, dry downslope winds gusting to 31–41 m s−1 (60–80 kt; 1 kt ≈ 0.51 m s−1) that initiated the fire by damaging power infrastructure. The fire spread rapidly in invasive grasses growing in abandoned agricultural land upslope from Lahaina. This paper describes the synoptic and mesoscale meteorology associated with this event, as well as its predictability. Stronger-than-normal northeast trade winds, accompanied by a stable layer near the crest level of the West Maui Mountains, resulted in a high-amplitude mountain-wave response and a strong downslope windstorm. Mesoscale model predictions were highly accurate regarding the location, strength, and timing of the strong winds. Hurricane Dora, which passed approximately 1300 km to the south of Maui, does not appear to have had a significant impact on the occurrence and intensity of the winds associated with the wildfire event. The Maui wildfire was preceded by a wetter-than-normal winter and near-normal summer conditions. Significance Statement The 2023 Maui wildfire was one of the most damaging of the past century, with at least 100 fatalities. This paper describes the meteorological conditions associated with the event and demonstrates that excellent model forecasts made the threat foreseeable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.