In this work, we investigated the luminous and melanopic efficiency of the radiation (LER/MER) performances of phosphor-converted LEDs (PC LEDs) with tunable spectral characteristics, namely peak wavelength, full width at half maximum (FWHM), and emission intensity. We constructed theoretical PC LED spectra based on the characteristics extracted from the database of IES TM-30-15, analyzed the relations between LER/MER and different spectral characteristics, and proposed spectral composition strategies at various correlated color temperatures (CCTs). Results showed that both MER and LER are linear with the FWHM of phosphor within the peak wavelength range in practical use, but the change in values by tuning emission intensity varies with spectral compositions. Hence, different spectral characteristics should be considered comprehensively. We further explored the trade-off between luminous and melanopic efficiency. Lowering the FWHM of phosphor and the intensity distribution of the blue LED can obtain higher LER and low circadian effect at lower CCT. As CCT increases, considering color rendering and the increase in the blue intensity distribution, besides reducing FWHM, tuning the peak wavelength close to the peak wavelength of V(λ) helps to reduce the circadian effect. These investigations provide optimization strategies for ideal melanopic and luminous performance of PC LED light sources.
Read full abstract