The deep learning (DL) techniques used for image classification might not deliver the desired level of classification accuracy as some features belonging to some class of a dataset are missed during feature extraction. The ensemble learning (EL) based model improves classification accuracy by combining the strengths of individual classifiers. As a result, those features that were missed during feature extraction by a specific DL technique will be taken care of by another DL technique in an ensemble DL approach. In this paper, averaging EL (AENet), weighted averaging EL (WAENet), and stacking EL (StackedNet) approaches are proposed, considering the DenseNet201, EcientNetB0, and ResNetRS101 as base models. The predictions of the base models are averaged to generate the AENet. The WAENet is constructed by assigning weights to each base model based on their prediction and then taking their average. Similarly, the Stacked-Net is developed by considering the DenseNet201, EcientNetB0, and ResNetRS101 as base-learners and ResNetRS101 as meta-learner. Analysed performance of the considered pre-trained base models and the developed EL models on the standard and application-specific datasets such as MiniImageNet, CIFAR10, CIFAR100, Plant Village (PV), Tomato, Covid-19 and 9IndianFood. 80% of the datasets were used to train and 20% to test the base and proposed models. The models are trained for an epoch of 30, considering a learning rate of 0.001 and adam optimizer. The stackedNet delivered better results than others.
Read full abstract