Introduction The progression of performance learning (PL) may have complex relationships beyond mere concurrent occurrences and may influence each other. This study aimed to classify the speed of PL using a random forest based on brain network and stress state information and to identify the factors necessary for PL. In addition, this study also aimed to clarify the complex interdependent relationships between PL, psychological state, and brain function through these factors, using covariance structure analysis. Methods A total of 20 healthy individuals participated in a choice reaction time task, and brain function was measured using near-infrared spectroscopy (NIRS). Participants were divided into high-PL and low-PL groups based on the median difference in correct responses. Results Random forest analysis identified the left orbitofrontal area, right premotor cortex, right frontal pole, left frontal pole, left dorsolateral prefrontal cortex, and depression and anxiety as key factors. Covariance structure analysis revealed that depression and anxiety affected PL through the frontal pole and prefrontal cortex, suggesting a complex interplay between psychological state, brain function, and learning. Conclusions These findings suggest that psychological states influence brain networks, thereby affecting learning performance. Tailoring rehabilitation programs to address psychological states and providing targeted feedback may improve learning outcomes. The study provides insights into the theoretical and practical applications of understanding the brain's role in PL, as well as the importance of addressing psychological factors to optimize learning and rehabilitation strategies.