Graph convolutional network has emerged as a focal point in machine learning because of its robust graph processing capability. Most existing graph convolutional network-based approaches are designed for single-view data, yet in many practical scenarios, data is represented through multiple views. Moreover, due to the complexity of multiple views, normal graph generation methods can not mitigate redundancy to generate a high quality graph. Although the ability of graph convolutional network is undeniable, the quality of graph directly affects its performance. To tackle the aforementioned challenges, this paper proposes a multi-scale graph generation deep learning framework, called multi-scale semi-supervised graph generation based multi-view classification, consisting of two modules: edge sampling and path sampling. The former aims to generate an adjacency graph by selecting edges based on the maximum likelihood among graphs from different views. Meanwhile, the latter seeks to construct a adjacency graph according to the characteristics of paths within the graphs. Finally, the statistical technique is employed to extract commonality and generate a fused graph. Extensive experimental results robustly demonstrate the superior performance of our proposed framework, compared to other state-of-the-art multi-view semi-supervised approaches.
Read full abstract