Before learning the cardinal principle (knowing that the last word reached when counting a set represents the size of the whole set), children do not use number words accurately to label most set sizes. However, it remains unclear whether this difficulty reflects a general inability to conceptualize and communicate about number, or a specific problem with number words. We hypothesized that children’s gestures might reflect knowledge of number concepts that they cannot yet express in speech, particularly for numbers they do not use accurately in speech (numbers above their knower-level). Number gestures are iconic in the sense that they are item-based (i.e., each finger maps onto one item in a set) and therefore may be easier to map onto sets of objects than number words, whose forms do not map transparently onto the number of items in a set and, in this sense, are arbitrary. In addition, learners in transition with respect to a concept often produce gestures that convey different information than the accompanying speech. We examined the number words and gestures 3- to 5-year-olds used to label small set sizes exactly (1–4) and larger set sizes approximately (5–10). Children who had not yet learned the cardinal principle were more than twice as accurate when labeling sets of 2 and 3 items with gestures than with words, particularly if the values were above their knower-level. They were also better at approximating set sizes 5–10 with gestures than with words. Further, gesture was more accurate when it differed from the accompanying speech (i.e., a gesture–speech mismatch). These results show that children convey numerical information in gesture that they cannot yet convey in speech, and raise the possibility that number gestures play a functional role in children’s development of number concepts.