The discharging of lead-contaminated wastewater is a concern because of its toxicity to living organisms and water quality resulting in dangerous water consumption, so it is highly recommended to remove lead from wastewater to be below water quality standards for a safe environment. Zeolite A sugarcane bagasse fly ash powder (ZB), zeolite A sugarcane bagasse fly ash powder mixed iron(III) oxide-hydroxide (ZBF), zeolite A sugarcane bagasse fly ash beads (ZBB), zeolite A sugarcane bagasse fly ash powder mixed iron(III) oxide-hydroxide beads (ZBFB), and zeolite A sugarcane bagasse fly ash beads coated iron(III) oxide-hydroxide (ZBBF) were synthesized and characterized in various techniques. Their lead removal efficiencies were investigated by batch experiments, adsorption isotherms, and kinetics. The specific surface area, pore volume, and pore size of ZB were close values to zeolite A standard (STD), and ZBF had the highest specific surface area and the smallest pore size than others. ZB and ZBF demonstrated crystalline phases whereas ZBB, ZBFB, and ZBBF were amorphous phases. The surface morphology of ZB was a cubic shape similar to STD. ZBF demonstrated an agglomerated formation of ZB and iron(III) oxide-hydroxide whereas ZBFB and ZBBF had sphere shapes with coarse surfaces. Si, Al, O, Fe, Na, Ca, O–H, (Si, Al)–O, H2O, and D4R were detected in all materials. The surface charges of all zeolite A materials had negatively charged at all pH values, and their surfaces increased more negatively charged with increasing pH value which pH 5 illustrated as the highest negatively charged in all materials. Their lead removal efficiencies were higher than 82%. Langmuir isotherm and pseudo-second-order kinetic models were well explained for their adsorption patterns and mechanisms. Finally, ZBBF is a good offer for applying in industrial wastewater treatment systems because of its easy operation and saving costs than ZBF.