Despite global efforts to phase out lead (Pb) products, their widespread use persists, notably in the lead-acid battery (LAB) industry. This trend is also evident in Bangladesh, where sustainability concerns surrounding the largely unexplored, yet highly vibrant informal sector remain unaddressed. It is imperative to unravel a comprehensive picture to implement targeted formalization strategies effectively at a meso level. This study aims to achieve this by using a substance flow analysis (SFA), life cycle assessment (LCA), and human health risk assessment (HHRA) approach, to highlight the environmental impacts and health risks associated with the industry's thriving informal sector. This sector emerges as a towering colossus of Pb pollution in the country, with a striking 86 % of the total Pb loss occurring from informal recycling alone. Informal electric vehicle (EV) LAB manufacturing is identified as a major contributor to land use, global warming, fine particulate matter formation, and terrestrial acidification impacts, with global warming and fine particulate matter contributing about 40 % each to the total human health impacts. Workers in the informal sector, the most overlooked victims of this industry, face alarming risks of non-carcinogenic and carcinogenic toxicity-related diseases, with oral exposure route making up 90.8 % of the total non-carcinogenic risks. As developing nations grapple with similar waste management challenges, often exacerbated by their socio-economic and political contexts, these findings underscore the urgent need for a robust national action plan. Collaboration among governmental entities and international stakeholders is imperative to execute targeted cleanup initiatives and uphold compliance with international environmental and public health standards.