In this paper we study gravitational wave perturbations in a cosmological setting of bigravity which can reproduce the ΛCDM background and large scale structure. We show that in general gravitational wave perturbations are unstable and only for very fine tuned initial conditions such a cosmology is viable. We quantify this fine tuning. We argue that similar fine tuning is also required in the scalar sector in order to prevent the tensor instability to be induced by second order scalar perturbations. Finally, we show that due to this power law instability, models of bigravity can lead to a large tensor to scalar ratio even for low scale inflation.