The 5-hydroxytryptamine type 3A receptor (5-HT3AR) is a ligand-gated cation channel activated by serotonin. This receptor is expressed throughout the nervous system as well as in the pituitary gland. Although it has been documented that the 5-HT3AR modulates exocytosis in neurons, its role in the pituitary gland has not been determined. Previous research has shown that the 5-HT3AR modulates circulating gonadotropin levels in vivo. It is unclear, however, if its activation in the pituitary gland mediates these effects or if receptors elsewhere in the hypothalamus-pituitary-gondal axis are responsible. To investigate the potential for the 5-HT3AR to modulate gonadotropin release from pituitary gonadotropes, the gonadotrope-derived LbetaT2 cell line was used as a model system and radioimmunoassays were employed to investigate how 5-HT3AR activation influences luteinizing hormone (LH) release. Our studies demonstrate that gonadotropin releasing hormone (GnRH)-stimulated LH release was decreased by the 5-HT3AR-specific antagonist MDL 72222 in a concentration-dependent manner. In addition, it was found that overexpressing the 5-HT3AR in LbetaT2 cells enhanced both basal and GnRH-stimulated LH release and also increased LHbeta gene promoter activity. These results suggest that the 5-HT3AR may participate in the hypothalamus-pituitary-gonadal axis at the level of the pituitary gonadotrope to mediate pituitary hormone release.
Read full abstract