Clay pores are important storage spaces in shale oil reservoirs. Studying the adsorption behavior of shale oil in clay nanopores is of great significance for reserve assessment and exploitation. In this work, illite clay pore models and multi-component shale oil adsorption models considering light hydrocarbon correction are constructed for carrying out molecular dynamics simulation. We studied the adsorption behavior and characteristics of shale oil in illite pores, and analyzed the effects of reservoir environmental factors such as temperature, pressure and pore size on the adsorption behavior. The results show that in illite nanopores, shale oil can form multiple adsorption layers. The heavier the component, the stronger the interaction with the wall. The adsorption ratio of the component is closely related to the solid–liquid interaction and the molar fraction, which preliminarily reveals the reason why the heavy component content in the produced oil is considerable. The increase in temperature promotes the desorption of light and medium components, while the heavy components and dissolved gas are less affected; although the increase in pressure inhibits diffusion, the adsorption amount changes little, and only the light component increases slightly. This study deeply reveals the adsorption mechanism of shale oil in illite pores, providing a theoretical basis for the optimization and development of shale reservoirs.
Read full abstract