Signaling in the granulosa cells of mammalian ovarian follicles is necessary for maintaining prophase arrest in the oocyte and for mediating the resumption of meiosis in response to luteinizing hormone (LH). However, the follicle also includes an outer layer of theca cells, some of which express receptors for LH. To investigate whether theca cells are required for maintaining meiotic arrest and reinitiating meiosis in response to LH, we mechanically separated the granulosa cells and oocyte from the theca and basal lamina. This was accomplished by cutting a slit in the outer surface of isolated follicles such that the mural granulosa cells and cumulus-oocyte complex were extruded from the theca shell, forming a lawn of cells on an organotypic membrane. The remnant of theca cells and basal lamina was then removed. The separation of the granulosa cells from the theca cells and basal lamina was demonstrated by immunofluorescence localization of endomucin (blood vessels of the theca) and laminin gamma (basal lamina). Cells comprising these granulosa cell-oocyte complexes expressed LH receptors and were connected by gap junctions. Oocytes within these granulosa cell complexes maintained meiotic arrest and resumed meiosis in response to LH, showing that the granulosa cells alone, without theca cells, transduce these signals. This semi-intact and mostly 2-dimensional preparation could facilitate imaging studies of follicle physiology.
Read full abstract