The study of green analytical chemistry has garnered significant attention in the context of mitigating global environmental contamination. In this study, we present two methodologies for environmentally friendly chromatography that enable simultaneous and specific determination of Saxagliptin (SAX), metformin (MET), and a pharmacopoeial impurity of MET known as melamine (MEL). The initial method employed in this study is High-Performance Thin Layer Chromatography (HPTLC), which utilized 60 F 254 silica gel-coated Mark HPTLC plates on aluminum sheets as the stationary phase. The developing system was made up of a mix of ethyl acetate: methanol: ammonia: glacial acetic acid in a ratio of 6:4:1:0.3 (v/v/v/v). The analysis was performed at a wavelength of 215 nm. The second method employed in this study is ultra-performance liquid chromatography (UPLC). In this method, a C18 column was utilized for the separation process. The mobile phase was made up of a mix of methanol and 0.01 M sodium dodecyl sulfate, with a pH of 3.3 achieved by adding orthophosphoric acid. The ratio of methanol to sodium dodecyl sulfate in the mobile phase was 70:30 (v/v). The flow rate of the mobile phase was established at a rate of 1.5 mL/min. The peaks found and recorded are resolved at a wavelength of 215 nm. The three analytes under investigation were successfully separated and assessed using the recommended protocols. Both methods were validated following the International Council for Harmonization (ICH) recommendations for assessing linearity, range, accuracy, precision, specificity, and robustness. Moreover, the environmental sustainability of the advanced methodologies The assessment has been performed using various instruments, such as the Analytical Eco-Scale, NEMI, GAPI, and AGREE. The utilization of these tools was implemented in order to perform a comprehensive assessment of the environmental sustainability of the methods, as well as to establish a comparison with previously documented approaches. This study was carried out to evaluate the potential environmental implications of the suggested methods and to determine their suitability for concurrent analysis of the examined pharmaceuticals in formula and quality control units.
Read full abstract