Manganese oxide-based catalysts have attracted extensive attention due to their relatively low cost and remarkable performance for removing VOCs. In this research, we used the Pechini method to synthesize manganese-cerium-nickel ternary oxide catalysts (MCN) and evaluated the effectiveness of catalytic destruction of formaldehyde (HCHO) and ozone at room temperature. FeOx prepared by the impregnation method was applied to modify the catalyst. After FeOx treatment, the catalyst represented the best performance on both HCHO destruction and ozone decomposition under dry conditions and exhibited excellent water vapor resistance.The as-prepared catalystswere next characterized via H2-temperature programmed reduction (H2-TPR), temperature programmed desorption of O2 (O2-TPD), and X-ray photoelectron spectroscopy (XPS), and the results demonstrated that addition of FeOx increased Mn3+ and Ce3+ concentrations, oxygen vacancies and surface lattice oxygen species, facilitated adsorption, and redox properties. Based on the results of in situ diffuse reflectance infrared Fourier transform spectrometry (DRIFTS), possible mechanisms of ozone catalytic oxidation of HCHO were proposed. Overall, the ternary mixed-oxide catalyst developed in this study holds great promise for HCHO and ozone decomposition in the indoor environment.
Read full abstract