Intervertebral disc degeneration (IVDD), a key contributor to degenerative spinal diseases such as cervical spondylosis, significantly influences the quality of life of patients. Tuina, historically employed in the clinical management of cervical spondylosis, has demonstrated positive therapeutic outcomes; however, the mechanism of Tuina remains unclear. This study examined the efficacy of Tuina in correcting the imbalanced structure of the cervical spine and its impact on apoptotic chondrocytes within the cervical disc. The underlying mechanisms were explored using a rabbit model of IVDD induced by dynamic and static imbalances. The IVDD rabbit model was established by restraining the head in a downward position for 12 weeks (Model group). In the Tuina1 group, treatment was performed on the posterior cervical trapezius muscle daily for 2 weeks, whereas in the Tuina2 group, treatment was performed on both the posterior cervical trapezius and anterior sternocleidomastoid muscles daily for 2 weeks. After treatment, X-ray, micro-computed tomography (CT), histological staining, qRT-PCR, and western blotting were used to evaluate the mechanism by which Tuina inhibits chondrocyte apoptosis. The results demonstrated that Tuina treatment inhibited chondrocyte apoptosis in cervical discs by adjusting the neck structure balance, and a more significant therapeutic effect was observed in the Tuina2 group. Lateral cervical spine X-ray and CT scans in rabbits revealed notable improvements in cervical spine curvature and vertebral structure in the treatment groups compared with those in the Model group. Hematoxylin and eosin staining and TUNEL staining further confirmed the positive impact of Tuina treatment on intervertebral disc tissue morphology and chondrocyte apoptosis. Additionally, western blotting and immunohistochemical analysis showed that Tuina treatment suppressed chondrocyte apoptosis by downregulating Bax and caspase-3 while upregulating Bcl-2. Western blotting results further indicated that Tuina could activate the FAK/PI3K/Akt signaling pathway by mediating integrin-β1. Tuina treatment inhibited chondrocyte apoptosis in cervical discs by activating the FAK/PI3K/Akt signaling pathway, providing convincing evidence to support Tuina treatment as a promising method for IVDD.
Read full abstract