A quadriwave lateral shearing interferometry (QWLSI) is proposed based on double birefringent crystals of a beam displacer (DBCs-BD). The DBCs-BD is formed by adopting two birefringent crystals of a polarization beam displacer (PBD), which can generate the lateral shearing interference waves of four beams of overlapped replicas in the DBCs-BD orthogonal directions. When the replica waves are overlapped incident to the analyzer, and the direction of the transmission axis is set as 45° or 135°, the QWLSI's polarization interferogram can be obtained. The high-precision phase can be obtained by simple spectrum denoising and performing the Fourier transform of the resulting interferogram. We deduce the principle of QWLSI in detail, and the wavefront distribution can be achieved by the phase calculation. The experiment shows that the DBCs-BD-QWLSI exhibits feasibility and high precision.
Read full abstract