The optical distortion of the lithographic projection lens can reduce imaging quality and cause overlay errors in lithography, thus preventing the miniaturization of printed patterns. In this paper, we propose a technique to measure the optical distortion of a lithographic projection lens by sensing the wavefront aberrations of the lens. A multichannel dual-grating lateral shearing interferometer is used to measure the wavefront aberrations at several field points in the pupil plane simultaneously. Then, the distortion at these field points is derived according to the proportional relationship between the Z 2 and Z 3 Zernike terms (the tilt terms) and the image position shifts. Without the need for additional devices, our approach can simultaneously retrieve both the wavefront aberrations and the image distortion information. Consequently, it improves not only measurement speed and accuracy but also enables accounting for displacement stage positioning error. Experiments were conducted on a lithographic projection lens with a numerical aperture of 0.57 to verify the feasibility of the proposed method.
Read full abstract