This research mainly focuses on the transport and dispersion of chemical agent plume according to the Lagrangian Puff Model and Lagrangian Particle Model of NBC_RAMS(Nuclear, Biological, Chemical Reporting And Modeling S/W System). NBC_RAMS was developed with the purposes of estimating the fate of Chemical, Biological, and Radioactive(CBR) agent plumes and evaluating damages in the Republic of Korea. First, it calculates the local weather pattern, i.e. wind speed, wind direction, and temperature, by considering the effects of land uses and topography. The plume behaviors are calculated by adopting the Lagrangian Puff Model(LPFM) or Lagrangian Particle Model(LPTM). In this research, we assumed a virtual chemical agent exposure event in a stable atmospheric condition during the summer season. The plume behaviors were estimated by both LPFM and LPTM on the used area(urbanized and dry area) and the agricultural land. The higher heat flux in the used area led to stronger winds and further downward movement moving of the chemical agent than the farmland. The lateral dispersion of the chemical plume was emphasized in the Lagrangian Puff Model because it adopted Gaussian distribution.