A comparison between tin-bearing granitoids in an anorogenic setting (Bushveld Complex) and an orogenic setting (Blue Tier Batholith, Tasmania) reveals a number of genetically important similarities. These include: in situ fractional crystallization characterised by marked decrease in Ba and Sr and increase in Rb; the accumulation of late melt in a sheet-like form near the roof zone; the association of barren pegmatites overlying the ore; and of aplites; and the occurrence of conformable tin-bearing sheets, often exhibiting greisenization. These features allow the formulation of the following genetic model. A crustally-derived granitoid magma is emplaced and undergoes fractional crystallization from the margins inwards, with bottom crystallization dominating. Disruption of earlier formed solids by rest liquid commonly occurs. Continued fractional crystallization causes enrichment in volatiles and incompatible elements in the late rest melts, which have a sheet-like habit. The efficiency of enrichment of incompatible elements is critically dependant on the degree of separation of melt from solids throughout crystallization. An early, tin-poor vapour may separate after initial water-saturation of the magma is achieved, and this collects under the roof, commonly forming an impermeable barrier to later tin-bearing fluids. Continued fractional crystallization on the floor further enriches incompatible elements, and at a very late stage a Sn-rich vapour separates within the intercumulus phase and becomes concentrated by progressive crystallization of the intercumulus melt. At a late stage of solidification, this vapour loses equilibrium with the earlier formed feldspars and greisenization ensues, accompanied by the crystallization of cassiterite and other ore minerals. The nature of the mineralization changes if through-going fractures tap the late fluids. This model predicts systematic changes in trace element geochemistry with crystallization which provide useful tools for assessing the tin potential of a granitoid, and for indicating the direction of crystallization of the magma, and hence the location of possible ore.
Read full abstract