Planning longitudinal studies can be challenging as various design decisions need to be made. Often, researchers are in search for the optimal design that maximizes statistical power to test certain parameters of the employed model. We provide a user-friendly Shiny app OptDynMo available at https://shiny.psychologie.hu-berlin.de/optdynmo that helps to find the optimal number of persons (N) and the optimal number of time points (T) for which the power of the likelihood ratio test (LRT) for a model parameter is maximal given a fixed budget for conducting the study. The total cost of the study is computed from two components: the cost to include one person in the study and the cost for measuring one person at one time point. Currently supported models are the cross-lagged panel model (CLPM), factor CLPM, random intercepts cross-lagged panel model (RI-CLPM), stable trait autoregressive trait and state model (STARTS), latent curve model with structured residuals (LCM-SR), autoregressive latent trajectory model (ALT), and the latent change score model (LCS).