Alzheimer disease (AD) is the most common form of dementia characterized by the loss of cognitive abilities through the death of central neuronal cells. In this study, structure-based virtual screens of 2 central nervous system-targeted libraries followed by molecular mechanics/generalized born surface area rescoring were performed to discover novel, selective butyrylcholinesterase (BChE) inhibitors, which are one of the most effective therapeutic strategies for the treatments in late-stage AD. Satisfyingly, compound 5 was identified as a highly selective low micromolar inhibitor of BChE (BChE IC50 = 1.4 μM). The binding mode prediction and kinetic analysis were performed to obtain detailed information about compound 5. Besides, a preliminary structure–activity relationship investigation of compound 5 was carried out for further development of the series. The present results provided a valuable chemical template with a novel scaffold for the development of selective BChE inhibitors.
Read full abstract