Background/Objectives: To develop a computer-aided diagnosis (CAD) method for the classification of late gadolinium enhancement (LGE) cardiac MRI images into myocardial infarction (MI), myocarditis, and healthy classes using a fine-tuned VGG16 model hybridized with multi-layer perceptron (MLP) (VGG16-MLP) and assess our model's performance in comparison to various pre-trained base models and MRI readers. Methods: This study included 361 LGE images for MI, 222 for myocarditis, and 254 for the healthy class. The left ventricle was extracted automatically using a U-net segmentation model on LGE images. Fine-tuned VGG16 was performed for feature extraction. A spatial attention mechanism was implemented as a part of the neural network architecture. The MLP architecture was used for the classification. The evaluation metrics were calculated using a separate test set. To compare the VGG16 model's performance in feature extraction, various pre-trained base models were evaluated: VGG19, DenseNet121, DenseNet201, MobileNet, InceptionV3, and InceptionResNetV2. The Support Vector Machine (SVM) classifier was evaluated and compared to MLP for the classification task. The performance of the VGG16-MLP model was compared with a subjective visual analysis conducted by two blinded independent readers. Results: The VGG16-MLP model allowed high-performance differentiation between MI, myocarditis, and healthy LGE cardiac MRI images. It outperformed the other tested models with 96% accuracy, 97% precision, 96% sensitivity, and 96% F1-score. Our model surpassed the accuracy of Reader 1 by 27% and Reader 2 by 17%. Conclusions: Our study demonstrated that the VGG16-MLP model permits accurate classification of MI, myocarditis, and healthy LGE cardiac MRI images and could be considered a reliable computer-aided diagnosis approach specifically for radiologists with limited experience in cardiovascular imaging.
Read full abstract