The last-level cache (LLC) is the last chance for memory accesses from the processor to avoid the costly latency of going to main memory. LLC management has been the topic of intense research focusing on two main techniques: replacement and prefetching. However, these two ideas are often evaluated separately, with one being studied outside the context of the state-of-the-art in the other. We find that high-performance replacement and highly accurate pattern-based prefetching do not result in synergistic improvements in performance. The overhead of complex replacement policies is wasted in the presence of aggressive prefetchers. We find that a simple replacement policy with minimal overhead provides at least the same benefit as a state-of-the-art replacement policy in the presence of aggressive pattern-based prefetching. Our proposal is based on the idea of using a genetic algorithm to search the space of insertion and promotion policies that generalize transitions in the recency stack for the least-recently-used policy.