Attempt was made to improve the surface hardness and wear properties of AISI M2 high speed tool steel. Laser surface melting (LSM) of tool steel was conducted with 2.2 KW Nd:YAG laser as heating source. Conventional hardening of the tool steel was applied. Characterizing the LSM, with optical and field emission scanning electron microscopy and surface hardness technique was used to evaluate the micro-hardness and mechanical behaviour of different regions of melting pool. AISI M2 tool steel is approximately HV 260, hardness after conventional treatment was 850 HV and the hardness after laser surface heat treatment is around 900 HV. It was found that there is a considerable influence of the laser power density and scanning velocity on the melted zone dimensions and the re-solidified structure. Increasing laser energy and reducing the laser scanning rate results in deeper and wider melt pool formation.