Since the direct detection of gravitational wave will give us a fruitful insight about the early universe or life of stars, laser interferometric gravitational wave detectors with the strain sensitivity of higher than 10−22 have been developed. In Japan, the space gravitational wave detector project named DECi-hertz Gravitational wave Observatory (DECIGO) has been promoted which consists of three satellites forming equilateral triangle-shaped Fabry–Perot laser interferometer with the arm length of 1000 km. The designed strain sensitivity of DECIGO is 2 × 10−24/√Hz around 0.1 Hz whose targets are gravitational waves originated from the inspiral and the merger of black hole or neutron star binaries and from the inflation at the early universe, and no ground-based gravitational wave detector can access this observation band. Before launching DECIGO in 2030s, a milestone mission named B-DECIGO is planned which is a downsized mission of DECIGO. B-DECIGO also has its own scientific targets in addition to the feasibility test for DECIGO. In the present paper, DECIGO and B-DECIGO projects are reviewed.
Read full abstract