We extracted the molecular-frame elastic differential cross sections (MFDCSs) for electrons scattering from N_{2}^{+} based on elliptical laser-induced electron diffraction (ELIED), wherein the structural evolution is initialized by the same tunneling ionization and probed by incident angle-resolved laser-induced electron diffraction imaging. To establish ELIED, an intuitive interpretation of the ellipticity-dependent rescattering electron momentum distributions was first provided by analyzing the transverse momentum distribution. It was shown that the incident angle of the laser-induced returning electrons could be tuned within 20° by varying the ellipticity and handedness of the driving laser pulses. Accordingly, the incident angle-resolved DCSs of returning electrons for spherically symmetric targets (Xe^{+} and Ar^{+}) were successfully extracted as a proof-of-principle for ELIED. The MFDCSs for N_{2}^{+} were experimentally obtained at incident angles of 4° and 7°, which were well reproduced by the simulations. The ELIED approach is the only successful method so far for obtaining incident angle-resolved ionic MFDCS, which provides a new sensitive observable for the transient structure retrieval of N_{2}^{+}. Our results suggest that the ELIED has the potential to extract the structural tomographic information of polyatomic molecules with femtosecond and subangstrom spatiotemporal resolutions that can enable the visualization of the nuclear motions in complex chemical reactions as well as chiral recognition.
Read full abstract