Aluminum-quasicrystal composites are attractive candidate alloys for additive manufacturing, but the cost of evaluating such systems can be prohibitive. Recently, surface laser glazing studies have been used to show that desirable composite microstructures can be formed in an Al85Cu6Fe3Cr6 alloy under a wide range of laser processing parameters. Here the thermal stability of these laser track microstructures has been evaluated by performing in situ scanning transmission electron microscopy heating experiments on specimens produced by focused ion beam milling from the center of the tracks. The initial track microstructures exhibited a uniform phase mixture with 70 % by volume of I-phase quasicrystalline dispersoids in a FCC Al matrix with a film of Al2Cu at the interface. Preliminary ramped heating experiments were used to identify the temperatures at which transformations occurred and then isothermal experiments on fresh samples were used to monitor the progress of these processes. For temperatures of up to 450 °C the only significant changes were a redistribution and coarsening of the Al2Cu phase with a gradual increase in the Fe content of the phase. At higher temperatures, the I-phase decomposed to form a mixture of crystalline ω-Al7Cu2Fe and μ-Al4Cr phases. The I-phase decomposition proceeded by ejection of Cu and Fe with the remaining Cr-rich regions transforming to the Al4Cr approximant phase. The implications of these phenomena for use of the alloy in additive manufacturing are discussed.
Read full abstract