Abstract

In this work, functionally graded lanthanum magnesium hexaluminate (LaMgAl11O19)/yttria-stabilised zirconia (YSZ) thermal barrier coating (FG-TBC), in as-sprayed and laser-glazed conditions, were investigated for their thermal shock resistance and thermal insulation properties. Results were compared with those of a dual-layered coating of LaMgAl11O19 and YSZ (DC-TBC). Thermal shock tests at 1100 °C revealed that the as-sprayed FG-TBC had improved thermal stability, i.e., higher cycle lifetime than the as-sprayed DC-TBC due to its gradient architecture, which minimised stress concentration across its thickness. In contrast, DC-TBC spalled at the interface due to the difference in the coefficient of thermal expansion between the LaMgAl11O19 and YSZ layers. Laser glazing improved cycle lifetimes of both the types of coatings. Microstructural changes, mainly the formation of segmentation cracks in the laser-glazed surfaces, provided strain tolerance during thermal cycles. Infrared rapid heating of the coatings up to 1000 °C showed that the laser-glazed FG-TBC had better thermal insulation capability, as interlamellar pores entrapped gas and constrained heat transfer across its thickness. From the investigation, it is inferred that (i) FG-TBC has better thermal shock resistance and thermal insulation capability than DC-TBC and (ii) laser glazing can significantly enhance the overall thermal performance of the coatings. Laser-glazed FG-TBC provides the best heat management, and has good potential for applications that require effective heat management, such as in gas turbines.

Highlights

  • Back wall temperature drop was measured with time

  • Thermocouples T5 and T6 were attached to the back side of the and surface roughness of bond coat influence theirby microstructure surface roughness

  • During the APS process, molten and semi-molten particles impinge on the targeted substrate and/or previously deposited ceramic layers at higher temperature and pressure

Read more

Summary

Introduction

Thermal barrier coatings (TBC) are multi-layered ceramic coatings, usually used in gas turbines to impart thermal insulation to turbine components from hot combustion gases [1,2]. A TBC consists of two distinctive layers, namely (i) metallic bond coat and (ii) ceramic top coat. The metallic bond coat is coated over turbine components to provide better compliance with the ceramic top coat. The two layers of a TBC have distinct physical, thermal and mechanical properties.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call