Intravenous bolus (IVb) injection of fentanyl induces an immediate apnea, but the characteristics of the apnea and relevant mechanism remain unclear. Here, we tested whether IVb injection of fentanyl induced an immediate central and upper airway obstructive apnea associated with chest wall rigidity via activating vagal C-fibers (VCFs) and vagal afferent opioid receptors (ORs). Cardiorespiratory and electromyography of external and internal intercostal, thyroarytenoid and superior pharyngeal constrictor muscles (EMGEI, EMGII, EMGTA and EMGSPC) responses to IVb injection of fentanyl were recorded in anesthetized and spontaneously breathing rats with or without bilateral peri-vagal capsaicin treatment or intra-vagal microinjection of naloxone. Immunohistochemical approach was employed to define the presence of opioid mu-receptor (MOR) expression in vagal C-neurons and a patch clamp technique utilized to determine the evoked current responses of vagal C-neurons to fentanyl in vitro. Fentanyl induced an immediate apnea and subsequent respiratory depression. The apnea was characterized by cessation of EMGEI activity and augmentation of tonic discharges of EMGII, EMGTA, and EMGSPC, i.e., central expiratory apnea, laryngeal closure and pharyngeal constriction/collapse accompanied with chest wall rigidity. The apneic response was abolished by blockade of VCF signal conduction and largely attenuated by antagonism of vagal afferent ORs. The latter significantly alleviated the initial (within 5 min post injection), but not the later, respiratory depression. Vagal C-neurons expressed MORs and were activated by fentanyl. We conclude that IVb injection of fentanyl causes a VCF- and vagal afferent OR-mediated immediate central apnea, upper airway obstruction and chest wall rigidity.