Abstract

Exercise-induced laryngeal obstruction (EILO) describes paradoxical laryngeal closure during inspiration at high-intensity exercise. It is hypothesised that during intense activity, the air-induced loads on supraglottic walls overcome their internal stiffness, leading to the obstruction. Recent investigations have revealed that the air-induced loads on the supraglottic walls vary nonlinearly with increasing flow rate. It is, however, unclear whether certain geometric configurations of the hypopharynx and larynx may contribute to the predisposition to EILO. This study investigates the influence of hypopharyngeal and laryngeal geometry on upper respiratory tract airflow and air-induced forces. A computational fluid dynamics model is developed to study airflow through larynx. Four real, adult upper respiratory tracts with variable configurations are considered. Two steady, uniform inspiratory flow rates of 60 L/min and 180 L/min are considered. The analysis shows that geometries with a space lateral to the epiglottis (EpiS) and piriform fossae (PF) directs the hypopharyngeal and supraglottic pressure field to remain positive and increase with the flow rate. In geometries with EpiS and PF, pressure differential occurs around the aryepiglottic fold producing a net inward force over the region. The three-fold increase in flow rate induces near ten-fold increases in force over the region which may facilitate the closure. It is concluded that hypopharyngeal anatomy, particularly the piriform fossae, play a significant role in the obstruction of the supraglottic airway and should be considered in research and clinical assessment of EILO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.