Purpose: To determine whether lactoferrin, specifically endogenous mouse lactoferrin and exogenous intraperitoneal lactoferrin treatment, plays a role in reducing the chorioretinal damage in the laser-induced model of choroidal neovascularization. Materials and methods: Four 532-nm argon laser spots were placed between the retinal vessels of each eye. At Day 7, Fluorescein Angiography was performed to grade the lesions. The mice were perfused with fluorescein-labeled tomato lectin and sacrificed. The retinal pigment epithelium-choroid-sclera complex was flat-mounted and analyzed with a confocal microscope to measure the volume of the lesions. The effect of endogenous lactoferrin was studied by comparing lactoferrin knockout and wild-type (WT) mice. The effect of exogenous lactoferrin treatment was studied by comparing lactoferrin knockout and WT mice treated with lactoferrin for seven days to their respective controls. Results: Lactoferrin knockout mice demonstrated 47% larger lesion volumes than WT mice (p < 0.001). Intraperitoneal treatment with Lactoferrin reduced the lesion volume in Lactoferrin knockout mice by 26% (p < 0.04). Regarding the fluorescein angiography, lesions indicating the greatest damage (grade 2B) occurred more frequently in control lactoferrin knockout mice compared with control WT mice (16% versus 5%). Intraperitoneal treatment with Lactoferrin reduced the grade 2B lesions from16% to 2% in Lactoferrin knockout mice. Conclusion: The endogenous lactoferrin present in WT mice appears to reduce the choroidal neovascularization in the laser-induced choroidal neovascularization model in mice. Treatment with exogenous lactoferrin is capable of reducing the choroidal neovascularization in lactoferrin knockout mice but does not add a significant protective effect to WT.