Electro-thermally actuated origami provides a novel method for creating 3-D systems with advanced morphing and functional capabilities. However, it is currently difficult to simulate the multi-physical behavior of such systems because the electro-thermal actuation and large folding deformations are highly interdependent. In this work, we introduce a rapid multi-physics simulation framework for electro-thermally actuated origami systems that can simultaneously capture: thermo-mechancially coupled actuation, inter panel contact, heat transfer, large deformation folding, and other complex loading applied onto the origami. Comparisons with finite element models validate the proposed framework for simulating origami heat transfer with different system geometries, materials, and surrounding environments. Verification of the simulated folding behaviors against physical electro-thermal micro-origami further demonstrates the validity of the proposed model. Simulations of more complex origami patterns and a case study for origami optimization are provided as application examples to show the capability and efficiency of the model. The framework provides a novel simulation tool for analysis, design, control, and optimization of active origami systems, pushing the boundary for feasible shape morphing and functional capability.