With the ubiquitous deployment of mobile and sensor technologies in modes of transportation, taxis have become a significant component of public transportation. However, vacant taxis represent an important waste of transportation resources. Forecasting taxi demand within a short time achieves a supply-demand balance and reduces oil emissions. Although earlier studies have forwarded highly developed machine learning- and deep learning-based models to forecast taxicab demands, these models often face significant computational expenses and cannot effectively utilize large-scale trajectory sensor data. To address these challenges, in this paper, we propose a hybrid deep learning-based model for taxi demand prediction. In particular, the Variational Mode Decomposition (VMD) algorithm is integrated along with a Bidirectional Long Short-Term Memory (BiLSTM) model to perform the prediction process. The VMD algorithm is applied to decompose time series-aware traffic features into multiple sub-modes of different frequencies. After that, the BiLSTM method is utilized to predict time series data fed with the relevant demand features. To overcome the limitation of high computational expenses, the designed model is performed on the Spark distributed platform. The performance of the proposed model is tested using a real-world dataset, and it surpasses existing state-of-the-art predictive models in terms of accuracy, efficiency, and distributed performance. These findings provide insights for enhancing the efficiency of passenger search and increasing the profit of taxicabs.