Constrained multiobjective optimization problems (CMOPs) are prevalent in practical applications, where constraints play a significant role. Building on techniques from constrained single-objective optimization, classical methods such as the constrained dominance principle have been extended to CMOPs. However, these methods struggle with CMOPs characterized by complex infeasible regions. Furthermore, as the number of decision variables increases, the search efficiency of algorithms deteriorates dramatically. To solve those issues, we propose a staged fuzzy evolutionary algorithm (i.e., SFEA) for constrained large-scale problems. To balance exploration and exploitation, a fuzzy stage adjustment strategy based on the sigmoid function is proposed. Furthermore, this article develops an improved fuzzy operator to perform fuzzy operations on various vectors (e.g., solutions or constraint violations). Computational experiments were conducted on CMOP test suites with up to 500 decision variables and a series of real-world applications. The experimental results demonstrate that, compared to existing peer algorithms, our algorithm exhibits superior or competitive performance.