Abstract
Container technology has gained a widespread application in cloud computing environments due to its low resource overhead and high flexibility. However, as the number of containers grows, it becomes increasingly challenging to achieve the rapid and coordinated optimization of multiple objectives for container scheduling, while maintaining system stability and security. This paper aims to overcome these challenges and provides the optimal allocation for a large number of containers. First, a large-scale multi-objective container scheduling optimization model is constructed, which involves the task completion time, resource cost, and load balancing. Second, a novel optimization algorithm called LSMOF-AD (large-scale multi-objective optimization framework with muti-stage and adaptive differential strategies) is proposed to effectively handle large-scale container scheduling problems. The experimental results show that the proposed algorithm has a better performance in multiple benchmark problems compared to other advanced algorithms and can effectively reduce the task processing delay, while achieving a high resource utilization and load balancing compared to other scheduling strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.