Stratified wakes past an isolated conical seamount are simulated at a Froude number of $Fr = 0.15$ and Rossby numbers of $Ro = 0.15$ , 0.75 and $\infty$ . The wakes exhibit a Kármán vortex street, unlike their unstratified, non-rotating counterpart. Vortex structures are studied in terms of large-scale global modes, as well as spatially localised vortex evolution, with a focus on rotation effects. The global modes are extracted by spectral proper orthogonal decomposition (SPOD). For all three studied $Ro$ ranging from mesoscale, submesoscale and non-rotating cases, the frequency of the SPOD modes at different heights remains coupled as a global constant. However, the shape of the SPOD modes changes from slanted ‘tongues’ at zero rotation ( $Ro=\infty$ ) to tall hill-height columns at strong rotation ( $Ro=0.15$ ). A novel method for vortex centre tracking shows that, in all three cases, the vortices at different heights advect uniformly at approximately $0.9U_{\infty }$ beyond the near wake, consistent with the lack of variability of the global modes. Under system rotation, cyclonic vortices and anticyclonic vortices (AVs) present considerable asymmetry, especially at $Ro = 0.75$ . The vorticity distribution as well as the stability of AVs are tracked downstream using statistics conditioned to the identified vortex centres. At $Ro=0.75$ , intense AVs with relative vorticity up to $\omega _z/f_{c}=-2.4$ (where $\omega_z$ is the vertical vorticity and $f_c$ is the Coriolis frequency) are seen with small regions of instability and they maintain large $\omega _z/f_{c}$ magnitude in the far wake. Recent stability analysis that accounts for stratification and viscosity is found to improve on earlier criteria and show that these intense AVs are stable.
Read full abstract