Abstract

Multi-dimensional orbital angular momentum (OAM) mode multiplexing provides a promising route for enlarging communication capacity and establishing comprehensive networks. While multi-dimensional multiplexing has gained advancements, the cross-connection of these multiplexed channels, especially involving modes and polarizations, remains challenging due to the needs for multi-mode interconversion and on-demand polarization control. Herein, we propose an OAM mode-polarization cross-transformation solution via cascaded partitioned phase modulation, which enables the divergently separated OAM modes to be independently phase-imposed within distinct spatial regions, leading to the synergistic conversion operation of mode and polarization channels. In demonstrations, we implemented the cross-connection of three OAM modes and two polarization multiplexed channels, achieving the mode purity that exceeds 0.951 and polarization contrast up to 0.947. The measured mode insertion losses and polarization conversion losses are below 3.42 and 3.54 dB, respectively. Consequently, 1.2 Tbit/s quadrature phase shift keying signals were successfully exchanged, yielding the bit-error-rates close to 10-6. Incorporating with increased partitioned phase treatments, this approach shows promise in accommodating massive mode-polarization multiplexed channels, which hold the potential to augment networking capability of large-scale OAM mode multiplexing communication networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.