Landslides are phenomena that cause significant human and economic losses. Researchers have investigated the prediction of high landslides susceptibility with various methodologies based upon statistical and mathematical models, in addition to artificial intelligence tools. These methodologies allow to determine the areas that could present a serious risk of landslides. Monitoring these risky areas is particularly important for developing an Early Warning Systems (EWS). As matter of fact, the variety of landslides’ types make their monitoring a sophisticated task to accomplish. Indeed, each landslide area has its own specificities and potential triggering factors; therefore, there is no single device that can monitor all types of landslides. Consequently, Wireless Sensor Networks (WSN) combined with Internet of Things (IoT) allow to set up large-scale data acquisition systems. In addition, recent advances in Artificial Intelligence (AI) and Federated Learning (FL) allow to develop performant algorithms to analyze this data and predict early landslides events at edge level (on gateways). These algorithms are trained in this case at fog level on specific hardware. The novelty of the work proposed in this paper is the integration of Federated Learning based on Fog-Edge approaches to continuously improve prediction models.