By adjusting the synthesis process, silver nanoparticles (AgNp) of various shapes, sizes, and structures can be obtained, all of which have a substantial impact on the biological effect, notably, the regulation of antibacterial activity in the present circumstances of growing bacterial resistance. Due to their relatively small size, nanoparticles may be disseminated evenly throughout the body of the experimental animal, even at low doses, and exert more potent antibacterial activities. Our research was centered on the synthesis, production, and biological evaluation of antibacterial silver nanoparticles. Using the Turkevich method, we were able to effectively synthesize and characterize nanoscale silver particles, with an average crystallite size of 9.49 nm. We examined their acute toxicity and pharmacokinetic characteristics in rats after administering a single dosage. In addition, we evaluated the biological effect of topical AgNp suspension on the progression of burn-type lesions in the experimental animals. The pharmacokinetic profile demonstrated that the plasma concentration of silver nanoparticles, as well as their clearance rate, and dispersion throughout the body, are significantly enhanced in large rodent species. The restorative effect of synthesized silver nanoparticles in the form of a suspension in distilled water was corroborated by the values of the hematological parameters. These results demonstrated an intense stimulation of the cellular and molecular processes of the local immune defense, which has resulted in significantly faster regeneration in the AgNp-treated group.