We investigated the microstructure, mechanical properties, and stress corrosion cracking (SCC) propagation behaviour of 316LN austenitic stainless steel with various cold work (CW) levels. CW increased the crack growth rate of 316LN. The stress corrosion crack growth rate (SCCGR) for 316LN with 5% CW was approximately 6.52% higher than that of the solution-annealed state; 10%, 20%, and 30% CW resulted in 1.20, 3.18, and 6.10 times higher SCCGRs, respectively. A larger residual strain and proliferation of slip bands via cold deformation augmented the SCCGR. The SCC propagation mechanism of 316LN changed with increasing CW levels owing to slip bands.