The early Ladinian lacustrine ecosystem of the Chang 7 Member in the Ordos Basin was proposed as the earliest known Mesozoic-type, trophically multileveled lacustrine ecosystem after the end-Permian mass extinction (EPME). However, limited evidence of higher-order trophic levels represented by predatory fish has made this conclusion elusive. In this study, we investigated the external morphology, food inclusions, and geochemical composition of 54 vertebrate coprolites from organic-rich lacustrine sediments of Chang 7 Member, Yanchang Formation, in the Bawangzhuang section, Tongchuan City, Shaanxi Province, China. These coprolites were identified as seven morphotypes in three groups: three heteropolar spiral forms, two amphipolar spiral forms, and two non-spiral forms. Preserved inclusions (fish scales, bone fragments, teeth) indicated that the producers of these coprolites were piscivorous animals. Compared with coprolites previously researched, all coprolites described herein were inferred to be produced by fish: three heteropolar types of spiral coprolites derived from three types of hybodonts, two amphipolar spiral coprolites from coelacanth or Saurichthys with simple spiral valves, and non-spiral coprolites from at least two predatory actinopterygians. Thus, the biodiversity of the lacustrine paleoecosystem, particularly that of predators with upper trophic levels, was substantially enriched. The existence of large carnivorous predators of different taxa as apex predators in a trophically multileveled (at least six levels) lacustrine ecosystem indicates that the early Ladinian lacustrine ecosystem of the Ordos Basin marks the rebuilding of the top-predator trophic structure in the lacustrine ecosystem after the EPME.
Read full abstract