2D vdWs heterostructure is realized as a powerful technique for tuning the optoelectronic properties and thus developing the future generation optoelectronic devices, especially for photodetectors. However, photodetectors based on 2D vdWs heterostructure suffer from responsivity, detectivity, and large photoresponse speed inhibits their applications in further diverse areas. Here, a graphene electrode-based InSe/WSe2 vdWs heterostructure is proposed aiming to develop a high-performance photodetector. Owing to the graphene electrode, the heterostructure devices build a strong electronic field at the surface of the InSe/WSe2 vdWs heterostructure. As a result, the device shows excellent optoelectronic characteristics such as broad band photoresponse ranging from 532 nm (visible) to 1100 nm (near infrared) including a high responsivity of 829.7 AW−1, a detectivity of 2.81×1014 Jones and a rapid photoresponse of 10 µs. Significantly, as presented photodetector device is applied in an imaging system, showcasing its capability for high-contrast photodetection. These findings highlight that the potential of graphene electrode integration in 2D vdWs heterostructure provides an effective roadmap for developing the advancing next generation of optoelectronic devices.
Read full abstract