AbstractThe impact of hydrodynamic groundwater movement on the capacity of seals is currently in debate. There is an extensive record of publication on seals analysis and a similar history on petroleum hydrodynamics yet little work addresses the links between the two. Understanding and quantifying the effects of hydrodynamic flow has important implications for calibrating commonly used seal capacity estimation techniques. These are often based on measurements such as shale gouge, clay smear or mercury porosimitry where membrane sealing is thought to occur. For standard membrane seal analysis, seal capacity is estimated by quantifying capillary pressure‐related measurements and calibrating them with a large observational database of hydrocarbon column heights and measured buoyancy pressures. The seal capacity estimation process has historically been adjusted to account for a number of different generic trapping geometries. We define the characteristics of these geometries from a hydrodynamics viewpoint in order to fine‐tune the seal capacity calibration process. From theoretical analyses of several simplified trapping geometries, it can be concluded that generally, the high pressure side of the seal should be used as the water pressure gradient with which to calculate buoyancy pressure. Secondly, trap geometries where hydrocarbon is reservoired on both sides of a fault are not useful for estimating across fault seal capacity.