Context Bennett’s wallaby (Notamacropus rufogriseus) was introduced into New Zealand in the late-1800s, and has subsequently become a significant pest to agriculture, silviculture, and native vegetation. Effective management of wallabies requires robust spatial and temporal ecological information, which can be used operationally to increase detection and kill rates. Aims To determine home range size and shape, resource (i.e. habitat and topography) selection, and daily movement patterns of three populations of Bennett’s wallaby in the South Island. Methods We attached GPS-collars to 38 adult wallabies (17 females, 21 males) between May 2018 and May 2019, and obtained usable location data from 30 individuals. We used kernel density estimators and resource selection functions to quantify seasonal home ranges and resource selection, respectively. Key results The mean seasonal home range sizes of males and females were similar (26.8 ha and 24.8 ha, respectively; combined range = 1.2–101.9 ha), although the largest home ranges belonged to large males. Resource selection was strongly influenced by distance to concealment cover, ridgelines and streams, i.e. wallabies selected to be closer to these features, though not necessarily at them. Wallabies selected areas close to concealment cover throughout 24-h periods, but most strongly during the day, which is when they bed in dense cover. Wallabies sampled outside of peak breeding moved most during dusk and dawn (median = ~50 m/h), whereas those sampled during peak breeding moved widely during day, dusk, and night (110–280 m/h), but not dawn (median = ~50 m/h). Conclusions The home range sizes of wallabies in New Zealand were highly variable, but on average were similar for males and females. Wallabies selected pasture close to areas with some cover, suggesting a trade-off between access to high-quality forage and concealment cover. Implications Our results provide robust data for modelling management strategies for wallabies, and contribute directly to operational planning by identifying habitats where wallabies are most likely to be found temporally. This information can be used to determine the appropriate survey methods and control tools to maximise detection rates and kill rates of wallabies, based on habitat.
Read full abstract