AbstractReaction–diffusion equations are studied on bounded, time-periodic domains with zero Dirichlet boundary conditions. The long-time behaviour is shown to depend on the principal periodic eigenvalue of a transformed periodic-parabolic problem. We prove upper and lower bounds on this eigenvalue under a range of different assumptions on the domain, and apply them to examples. The principal eigenvalue is considered as a function of the frequency, and results are given regarding its behaviour in the small and large frequency limits. A monotonicity property with respect to frequency is also proven. A reaction–diffusion problem with a class of monostable nonlinearity is then studied on a periodic domain, and we prove convergence to either zero or a unique positive periodic solution.
Read full abstract