Abstract
The Floquet eigenvalue problem is analyzed for periodically driven Friedrichs models on discrete and continuous space. In the high-frequency regime, there exists a Floquet bound state consistent with the Floquet-Magnus expansion in the discrete Friedrichs model, while it is not the case in the continuous model. In the latter case, however, the bound state predicted by the Floquet-Magnus expansion appears as a metastable state whose lifetime diverges in the limit of large frequencies. We obtain the lifetime by evaluating the imaginary part of the quasi-energy of the Floquet resonant state. In the low-frequency regime, there is no Floquet bound state and instead the Floquet resonant state with exponentially small imaginary part of the quasi-energy appears, which is understood as the quantum tunneling in the energy space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.