Three-dimensional incompressible magnetohydrodynamics turbulence is investigated under the assumptions of homogeneity and axisymmetry. We demonstrate that previous works of Chandrasekhar may be improved significantly by using a different formalism for the representation of two-point correlation tensors. From this axisymmetric kinematics, the equations ` al a von K´´ an–Howarth are derived from which an exact relation is found in terms of measurable correlations. The relation is then analyzed in the particular case of a medium permeated by an imposed magnetic field B0. We make the ansatz that the development of anisotropy implies an algebraic relation between the axial and the radial components of the separation vector r and we derive an exact vectorial law which is parameterized by the intensity of anisotropy. The critical balance proposed by Goldreich & Sridhar is used to fix this parameter and to obtain a unique exact expression; the particular limits of correlations transverse and parallel to B0 are given for which simple expressions are found. Predictions for the energy spectra are also proposed by a straightforward dimensional analysis of the exact law; it gives a stronger theoretical background to the heuristic spectra previously proposed in the context of the critical balance. We also discuss the wave turbulence limit of an asymptotically large external magnetic field which appears as a natural limit of the vectorial relation. A new interpretation of the anisotropic solar wind observations is eventually discussed.